bokomslag Vector-valued Laplace Transforms and Cauchy Problems
Vetenskap & teknik

Vector-valued Laplace Transforms and Cauchy Problems

Wolfgang Arendt Charles J K Batty Matthias Hieber Frank Neubrander

Inbunden

2129:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 540 sidor
  • 2011
This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are studied. Diverse applications to partial differential equations are given. The book contains an introduction to the Bochner integral and several appendices on background material. It is addressed to students and researchers interested in evolution equations, Laplace and Fourier transforms, and functional analysis. The second edition contains detailed notes on the developments in the last decade. They include, for instance, a new characterization of well-posedness of abstract wave equations in Hilbert space due to M. Crouzeix. Moreover new quantitative results on asymptotic behaviour of Laplace transforms have been added. The references are updated and some errors have been corrected.
  • Författare: Wolfgang Arendt, Charles J K Batty, Matthias Hieber, Frank Neubrander
  • Format: Inbunden
  • ISBN: 9783034800860
  • Språk: Engelska
  • Antal sidor: 540
  • Utgivningsdatum: 2011-04-06
  • Förlag: Birkhauser Verlag AG