bokomslag Visual Attributes
1489:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 364 sidor
  • 2017
This unique text/reference provides a detailed overview of the latest advances in machine learning and computer vision related to visual attributes, highlighting how this emerging field intersects with other disciplines, such as computational linguistics and human-machine interaction. Topics and features: presents attribute-based methods for zero-shot classification, learning using privileged information, and methods for multi-task attribute learning; describes the concept of relative attributes, and examines the effectiveness of modeling relative attributes in image search applications; reviews state-of-the-art methods for estimation of human attributes, and describes their use in a range of different applications; discusses attempts to build a vocabulary of visual attributes; explores the connections between visual attributes and natural language; provides contributions from an international selection of world-renowned scientists, covering both theoretical aspects and practical applications.
  • Författare: Rogerio Schmidt Feris, Christoph Lampert, Devi Parikh
  • Illustratör: Bibliographie 6 schwarz-weiße und 136 farbige Abbildungen
  • Format: Inbunden
  • ISBN: 9783319500751
  • Språk: Engelska
  • Antal sidor: 364
  • Utgivningsdatum: 2017-03-30
  • Förlag: Springer International Publishing AG