bokomslag Weighted Approximation with Varying Weight
Vetenskap & teknik

Weighted Approximation with Varying Weight

Vilmos Totik

Pocket

379:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 118 sidor
  • 1994
A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.
  • Författare: Vilmos Totik
  • Format: Pocket/Paperback
  • ISBN: 9783540577058
  • Språk: Engelska
  • Antal sidor: 118
  • Utgivningsdatum: 1994-02-01
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K