bokomslag Weil's Conjecture for Function Fields
Vetenskap & teknik

Weil's Conjecture for Function Fields

Dennis Gaitsgory Jacob Lurie

Pocket

1099:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 320 sidor
  • 2019
A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weils conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weils conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting -adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors. Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weils conjecture. The proof of the product formula will appear in a sequel volume.
  • Författare: Dennis Gaitsgory, Jacob Lurie
  • Format: Pocket/Paperback
  • ISBN: 9780691182148
  • Språk: Engelska
  • Antal sidor: 320
  • Utgivningsdatum: 2019-02-19
  • Förlag: Princeton University Press