bokomslag Wiener Chaos: Moments, Cumulants and Diagrams
Vetenskap & teknik

Wiener Chaos: Moments, Cumulants and Diagrams

Giovanni Peccati Murad S Taqqu

Pocket

759:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 274 sidor
  • 2014
The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which Mbius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.
  • Författare: Giovanni Peccati, Murad S Taqqu
  • Format: Pocket/Paperback
  • ISBN: 9788847056046
  • Språk: Engelska
  • Antal sidor: 274
  • Utgivningsdatum: 2014-10-12
  • Förlag: Springer Verlag