bokomslag Z User Workshop, York 1991
Data & IT

Z User Workshop, York 1991

J E Nicholls

Pocket

759:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 408 sidor
  • 1992
In ordinary mathematics, an equation can be written down which is syntactically correct, but for which no solution exists. For example, consider the equation x = x + 1 defined over the real numbers; there is no value of x which satisfies it. Similarly it is possible to specify objects using the formal specification language Z [3,4], which can not possibly exist. Such specifications are called inconsistent and can arise in a number of ways. Example 1 The following Z specification of a functionf, from integers to integers "f x : ~ 1 x ~ O fx = x + 1 (i) "f x : ~ 1 x ~ O fx = x + 2 (ii) is inconsistent, because axiom (i) gives f 0 = 1, while axiom (ii) gives f 0 = 2. This contradicts the fact that f was declared as a function, that is, f must have a unique result when applied to an argument. Hence no suchfexists. Furthermore, iff 0 = 1 andfO = 2 then 1 = 2 can be deduced! From 1 = 2 anything can be deduced, thus showing the danger of an inconsistent specification. Note that all examples and proofs start with the word Example or Proof and end with the symbol.1.
  • Författare: J E Nicholls
  • Format: Pocket/Paperback
  • ISBN: 9783540197805
  • Språk: Engelska
  • Antal sidor: 408
  • Utgivningsdatum: 1992-08-01
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K