bokomslag Zeta and $L$-functions in Number Theory and Combinatorics
Vetenskap & teknik

Zeta and $L$-functions in Number Theory and Combinatorics

Wen-Ching Winnie Li

Pocket

1209:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 2-7 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 95 sidor
  • 2019
Zeta and $L$-functions play a central role in number theory. They provide important information of arithmetic nature. This book, which grew out of the author's teaching over several years, explores the interaction between number theory and combinatorics using zeta and $L$-functions as a central theme. It provides a systematic and comprehensive account of these functions in a combinatorial setting and establishes, among other things, the combinatorial counterparts of celebrated results in number theory, such as the prime number theorem and the Chebotarev density theorem. The spectral theory for finite graphs and higher dimensional complexes is studied. Of special interest in theory and applications are the spectrally extremal objects, called Ramanujan graphs and Ramanujan complexes, which can be characterized by their associated zeta functions satisfying the Riemann Hypothesis. Explicit constructions of these extremal combinatorial objects, using number-theoretic and combinatorial means, are presented. Research on zeta and $L$-functions for complexes other than graphs emerged only in recent years. This is the first book for graduate students and researchers offering deep insight into this fascinating and fast developing area.
  • Författare: Wen-Ching Winnie Li
  • Format: Pocket/Paperback
  • ISBN: 9781470449001
  • Språk: Engelska
  • Antal sidor: 95
  • Utgivningsdatum: 2019-03-30
  • Förlag: American Mathematical Society