bokomslag Advanced Techniques in Optimization for Machine Learning and Imaging
Data & IT

Advanced Techniques in Optimization for Machine Learning and Imaging

Alessandro Benfenati Federica Porta Tatiana Alessandra Bubba Marco Viola

Inbunden

3419:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 165 sidor
  • 2024
In recent years, non-linear optimization has had a crucial role in the development of modern techniques at the interface of machine learning and imaging. The present book is a collection of recent contributions in the field of optimization, either revisiting consolidated ideas to provide formal theoretical guarantees or providing comparative numerical studies for challenging inverse problems in imaging. The work of these papers originated in the INdAM Workshop Advanced Techniques in Optimization for Machine learning and Imaging held in Roma, Italy, on June 20-24, 2022. The covered topics include non-smooth optimisation techniques for model-driven variational regularization, fixed-point continuation algorithms and their theoretical analysis for selection strategies of the regularization parameter for linear inverse problems in imaging, different perspectives on Support Vector Machines trained via Majorization-Minimization methods, generalization of Bayesian statistical frameworks to imaging problems, and creation of benchmark datasets for testing new methods and algorithms.
  • Författare: Alessandro Benfenati, Federica Porta, Tatiana Alessandra Bubba, Marco Viola
  • Format: Inbunden
  • ISBN: 9789819767687
  • Språk: Engelska
  • Antal sidor: 165
  • Utgivningsdatum: 2024-10-03
  • Förlag: Springer Nature