bokomslag Advances in Large-Margin Classifiers
Data & IT

Advances in Large-Margin Classifiers

Alexander J Smola Peter Bartlett Bernhard Schlkopf Dale Schuurmans

Inbunden

169:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 422 sidor
  • 2000
The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification-that is, a scale parameter-rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.
  • Författare: Alexander J Smola, Peter Bartlett, Bernhard Schlkopf, Dale Schuurmans
  • Format: Inbunden
  • ISBN: 9780262194488
  • Språk: Engelska
  • Antal sidor: 422
  • Utgivningsdatum: 2000-09-01
  • Förlag: Bradford Books