Data & IT
Pocket
Predicting Structured Data
Gkhan Bakir • Thomas Hofmann • Bernhard Schlkopf • Alexander J Smola • Ben Taskar
1069:-
Uppskattad leveranstid 5-10 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure. Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning's greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field. Contributors Yasemin Altun, Goekhan Bakir, Olivier Bousquet, Sumit Chopra, Corinna Cortes, Hal Daume III, Ofer Dekel, Zoubin Ghahramani, Raia Hadsell, Thomas Hofmann, Fu Jie Huang, Yann LeCun, Tobias Mann, Daniel Marcu, David McAllester, Mehryar Mohri, William Stafford Noble, Fernando Perez-Cruz, Massimiliano Pontil, Marc'Aurelio Ranzato, Juho Rousu, Craig Saunders, Bernhard Schoelkopf, Matthias W. Seeger, Shai Shalev-Shwartz, John Shawe-Taylor, Yoram Singer, Alexander J. Smola, Sandor Szedmak, Ben Taskar, Ioannis Tsochantaridis, S.V.N Vishwanathan, Jason Weston
- Format: Pocket/Paperback
- ISBN: 9780262528047
- Språk: Engelska
- Antal sidor: 360
- Utgivningsdatum: 2007-07-01
- Förlag: MIT Press