bokomslag Bayesian Tensor Decomposition for Signal Processing and Machine Learning
Data & IT

Bayesian Tensor Decomposition for Signal Processing and Machine Learning

Lei Cheng Zhongtao Chen Yik-Chung Wu

Pocket

2239:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 183 sidor
  • 2024
This book presents recent advances of Bayesian inference in structured tensor decompositions. It explains how Bayesian modeling and inference lead to tuning-free tensor decomposition algorithms, which achieve state-of-the-art performances in many applications, including blind source separation; social network mining; image and video processing; array signal processing; and, wireless communications. The book begins with an introduction to the general topics of tensors and Bayesian theories. It then discusses probabilistic models of various structured tensor decompositions and their inference algorithms, with applications tailored for each tensor decomposition presented in the corresponding chapters. The book concludes by looking to the future, and areas where this research can be further developed. Bayesian Tensor Decomposition for Signal Processing and Machine Learning is suitable for postgraduates and researchers with interests in tensor data analytics and Bayesian methods.
  • Författare: Lei Cheng, Zhongtao Chen, Yik-Chung Wu
  • Format: Pocket/Paperback
  • ISBN: 9783031224409
  • Språk: Engelska
  • Antal sidor: 183
  • Utgivningsdatum: 2024-02-17
  • Förlag: Springer International Publishing AG