bokomslag Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems
Vetenskap & teknik

Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems

Yaguo Lei Naipeng Li Xiang Li

Pocket

1519:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 281 sidor
  • 2023
This book presents systematic overviews and bright insights into big data-driven intelligent fault diagnosis and prognosis for mechanical systems. The recent research results on deep transfer learning-based fault diagnosis, data-model fusion remaining useful life (RUL) prediction, etc., are focused on in the book. The contents are valuable and interesting to attract academic researchers, practitioners, and students in the field of prognostics and health management (PHM). Essential guidelines are provided for readers to understand, explore, and implement the presented methodologies, which promote further development of PHM in the big data era. Features: Addresses the critical challenges in the field of PHM at present Presents both fundamental and cutting-edge research theories on intelligent fault diagnosis and prognosis Provides abundant experimental validations and engineering cases of the presented methodologies
  • Författare: Yaguo Lei, Naipeng Li, Xiang Li
  • Format: Pocket/Paperback
  • ISBN: 9789811691331
  • Språk: Engelska
  • Antal sidor: 281
  • Utgivningsdatum: 2023-10-21
  • Förlag: Springer Verlag, Singapore