Carbon Materials for Catalysis
Inbunden, Engelska, 2009
2 929 kr
Produktinformation
- Utgivningsdatum2009-01-16
- Mått164 x 243 x 34 mm
- Vikt953 g
- FormatInbunden
- SpråkEngelska
- Antal sidor608
- FörlagJohn Wiley & Sons Inc
- ISBN9780470178850
Mer från samma författare
Tillhör följande kategorier
PHILIPPE SERP, PHD, is a Professor of Inorganic Chemistry at Ecole Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques, Institut National Polytechnique de Toulouse, France. He is the recipient of the 2004 Catalysis Division of the French Chemical Society Award and the APDF 2005 Celestino da Costa/Jean Perrin Award. Dr. Serp's research interests at Laboratoire de Chimie de Coordination include nanostructured catalytic materials (e.g., nanoparticles, nanotubes, and nanowires), nanocatalysis, and homogeneous catalytic reactions. He has published more than eighty papers and holds eight patents.JOSé LUÍS FIGUEIREDO, PHD, is a Professor of Chemical Engineering at Faculdade de Engenharia da Universidade do Porto (FEUP), Portugal. His research interests include applied catalysis and nanostructured carbon materials. In 2004, he received an award for excellence from the Portuguese Ministry for Higher Education and Scientific Research. Dr. Figueiredo has published more than 120 scientific papers in international journals and is the author or editor of seven books.
- Contributors xvPreface xix1 Physicochemical Properties of Carbon Materials: A Brief Overview 1Ljubisa R. Radovic1.1. Introduction 11.2. Formation of Carbons 21.2.1. Gas Phase 21.2.2. Liquid Phase 31.2.3. Solid Phase 41.3. Structure and Properties of Carbons 51.3.1. Macrostructure 51.3.2. Microstructure 81.3.3. Nanostructure 81.3.4. Bulk Properties 161.3.5. Surface Properties 191.4. Reactions of Carbons 231.4.1. Gas Phase 231.4.2. Liquid Phase 251.4.3. Solid Phase 271.5. Conclusions 33References 342 Surface Chemistry of Carbon Materials 45Teresa J. Bandosz2.1. Introduction 452.2. Surface Functionalities 472.2.1. Oxygen-Containing Functionalities 482.2.2. Nitrogen-Containing Functionalities 502.2.3. Hydrogen–Carbon Species 512.2.4. Sulfur Phosphorus and Halogen Functionalities 512.3. Surface Modifications 542.3.1. Oxidation 542.3.2. Introduction of Nitrogen-Containing Species 552.3.3. Introduction of Sulfur Functionality 552.3.4. Halogenization 562.3.5. Impregnation and Dry Mixing 562.3.6. Heat Treatment 562.4. Characterization of Surface Chemistry 582.4.1. Elemental Analysis 582.4.2. Titration 582.4.3. pH of Carbons Point of Zero Charge and Isoelectric Point 612.4.4. Spectroscopic Methods 632.4.5. Calorimetric Techniques 722.4.6. Inverse Gas Chromatography 752.4.7. Temperature-Programmed Desorption 752.4.8. Characterization of Surface Functionalities by Electrochemical Techniques 782.5. Role of Surface Chemistry in the Reactive Adsorption on Activated Carbons 782.6. Role of Carbon Surface Chemistry in Catalysis 80References 823 Molecular Simulations Applied to Adsorption on and Reaction with Carbon 93Zhonghua (John) Zhu3.1. Introduction 933.2. Molecular Simulation Methods Applied to Carbon Reactions 943.2.1. Electronic Structure Methods (or Quantum Mechanics Methods) 943.2.2. Molecular Dynamics Simulations 973.2.3. Monte Carlo Simulations 983.3. Hydrogen Adsorption on and Reaction with Carbon 983.3.1. Atomic Hydrogen Adsorption on the Basal Plane of Graphite 983.3.2. Reactivities of Graphite Edge Sites and Hydrogen Reactions on These Sites 1013.3.3. Hydrogen Storage in Carbon Nanotubes 1043.4. Carbon Reactions with Oxygen-Containing Gases 1053.4.1. Carbon Reactions with Oxygen-Containing Gases and the Unified Mechanism 1063.4.2. Catalyzed Gas–Carbon Reactions 1103.4.3. More Specific Studies on NOx, H2, CO2, and O2–Carbon Reactions 1183.5. Metal–Carbon Interactions 1223.6. Conclusions 125References 1264 Carbon as Catalyst Support 131Francisco Rodríguez-Reinoso and Antonio Sepúlveda-Escribano4.1. Introduction 1314.2. Properties Affecting Carbon’s Role as Catalyst Support 1324.2.1. Surface Area and Porosity 1324.2.2. Surface Chemical Properties 1344.2.3. Inertness 1364.3. Preparation of Carbon-Supported Catalysts 1374.3.1. Impregnation 1374.3.2. Other Methods 1394.4. Applications 1404.4.1. Ammonia Synthesis 1414.4.2. Hydrotreating Reactions 1434.4.3. Hydrogenation Reactions 1474.5. Summary 150References 1505 Preparation of Carbon-Supported Metal Catalysts 157Johannes H. Bitter and Krijn P. de Jong5.1. Introduction 1575.2. Impregnation and Adsorption 1575.2.1. Interaction Between Support and Precursor 1585.2.2. Role of Pore Structure 1645.3. Deposition Precipitation 1655.3.1. Increase in pH 1665.3.2. Change of Valency 1695.3.3. Ligand Removal 1705.4. Emerging Preparation Methods 1715.5. Conclusions 172References 1736 Carbon as Catalyst 177José Luís Figueiredo and Manuel Fernando R. Pereira6.1. Introduction 1776.2. Factors Affecting the Performance of a Carbon Catalyst 1786.2.1. Nature of the Active Sites 1786.2.2. Concentration of the Active Sites 1796.2.3. Accessibility of the Active Sites 1796.3. Reactions Catalyzed by Carbons 1806.3.1. Oxidative Dehydrogenation 1816.3.2. Dehydration of Alcohols 1866.3.3. SOx Oxidation 1886.3.4. NOx Reduction 1906.3.5. H2S Oxidation 1946.3.6. Hydrogen Peroxide Reactions 1966.3.7. Catalytic Ozonation 1986.3.8. Catalytic Wet Air Oxidation 2036.3.9. Other Reactions 2056.4. Conclusions 207References 2087 Catalytic Properties of Nitrogen-Containing Carbons 219Hanns-Peter Boehm7.1. Introduction 2197.2. Nitrogen Doping of Carbons 2207.2.1. Preparation of Nitrogen-Containing Carbons 2207.2.2. Quantitative Analysis 2277.2.3. Electron Emission Spectrometric Analysis 2277.2.4. Properties of Nitrogen-Containing Carbons 2337.3. Catalysis of Oxidation Reactions with Dioxygen 2387.3.1. Oxidation of Aqueous Sulfurous Acid 2387.3.2. Oxidation of Oxalic Acid 2447.3.3. Oxidation of Sulfur Dioxide 2447.3.4. Oxidation of Iron(II) Ions 2467.3.5. Oxidation of Other Compounds 2477.4. Catalysis of Aging of Carbons 2517.5. Catalysis of Dehydrochlorination Reactions 2547.6. Mechanism of Catalysis by Nitrogen-Containing Carbons 257References 2598 Carbon-Anchored Metal Complex Catalysts 267Cristina Freire and Ana Rosa Silva8.1. Introduction 2678.2. General Methods for Molecule Immobilization 2688.3. Methods for Immobilization of Transition-Metal Complexes Onto Carbon Materials 2708.3.1. Functionalization of Carbon Materials 2718.3.2. Direct Immobilization of Metal Complexes 2788.3.3. Metal Complex Immobilization via Spacers 2858.4. Application of Coordination Compounds Anchored Onto Carbon Materials in Several Catalytic Reactions 2898.4.1. [M(salen)]-Based Materials 2908.4.2. [M(acac)2]-Based Materials 2938.4.3. Metal Phthalocyanine and Porphyrin-Based Materials 2948.5. Application of Carbon-Supported Organometallic Compounds in Hydrogenation and Hydroformylation Catalytic Reactions 2968.5.1. Materials Based on Pd and Rh Amino Complexes 2968.5.2. Materials Based on Rh and Pd Complexes with π-Bonding Ligands (Phosphines and Dienes) 2978.6. Carbon-Supported Organometallic Complexes in the Polymerization Reaction of Olefins 3008.7. Conclusions 301References 3029 Carbon Nanotubes and Nanofibers in Catalysis 309Philippe Serp9.1. Introduction 3099.2. Catalytic Growth of Carbon Nanofibers and Nanotubes 3129.2.1. Catalytic Carbon Deposition 3129.2.2. Growth Mechanism 3139.3. Why CNTs or CNFs Can Be Suitable for Use in Catalysis 3249.3.1. Structural Features and Electronic Properties 3249.3.2. Adsorption Properties 3289.3.3. Mechanical and Thermal Properties 3309.3.4. Macroscopic Shaping of CNTs and CNFs 3319.4. Preparation of Supported Catalysts on CNTs and CNFs 3339.5. Catalytic Performance of CNT- and CNF-Based Catalysts 3409.5.1. Hydrogenation Reactions 3409.5.2. Reactions Involving CO/H2 3449.5.3. Polymerization 3459.5.4. Carbon Nanotubes Synthesis by Catalytic Decomposition of Hydrocarbons 3489.5.5. Ammonia Synthesis and Decomposition 3499.5.6. Environmental Catalysis and Oxidation Reactions 3509.5.7. Other Reactions 3519.5.8. Fuel Cell Electrocatalysts 3549.5.9. CNTs for Enzyme Immobilization 3559.5.10. CNTs and CNFs as Catalysts 3569.6. Conclusions 356References 35810 Carbon Gels in Catalysis 373Carlos Moreno-Castilla10.1. Introduction 37310.2. Carbon Gels: Preparation and Surface Properties 37410.3. Metal-Doped Carbon Gels 37610.3.1. Dissolving the Metal Precursor in the Initial Mixture 37810.3.2. Introducing a Functionalized Moiety 38110.3.3. Depositing the Metal Precursor on the Organic or Carbon Gel 38210.4. Catalytic Reactions of Metal-Doped Carbon Gels 38310.4.1. Environmental Applications 38410.4.2. Fuel Cell Applications 38710.4.3. C=C Double-Bond Hydrogenation 38910.4.4. Skeletal Isomerization of 1-Butene 39110.4.5. Hydrodechlorination Reaction 39210.4.6. Other Reactions 39210.5. Conclusions 393References 39511 Carbon Monoliths in Catalysis 401Karen M. de Lathouder Edwin Crezee Freek Kapteijn and Jacob A. Moulijn11.1. Introduction 40111.2. Carbon 40111.3. Monolithic Structures 40211.4. Carbon Monoliths 40211.5. Carbon Monoliths in Catalysis: An Overview 40411.6. Example of Carbon Monoliths as Catalyst Support Material 40511.6.1. Carbon Monoliths as Support Material in Biocatalysis 40511.6.2. Selective Hydrogenation of D-Glucose over Monolithic Ruthenium Catalysts 40511.6.3. Performance of Carbon Monoliths 40611.6.4. Morphology and Porosity of Various Carbon Composites 40711.6.5. Enzyme Adsorption and Catalyst Performance in the Msr 41311.6.6. Performance of Monolithic Ruthenium Catalysts 41611.7. Evaluation and Practical Considerations 42011.7.1. Monolithic Biocatalysts 42011.7.2. Monolithic Ruthenium Catalysts 42111.7.3. Practical Considerations 42111.8. Conclusions 423References 42412 Carbon Materials as Supports for Fuel Cell Electrocatalysts 429Frédéric Maillard Pavel A. Simonov and Elena R. Savinova12.1. Introduction 42912.2. Structure and Morphology of Carbon Materials 43312.2.1. Carbon Blacks 43312.2.2. Activated Carbons 43412.2.3. Carbons of the Sibunit Family 43512.2.4. Ordered Mesoporous Carbons 43612.2.5. Carbon Aerogels 43612.2.6. Carbon Nanotubes and Nanofibers 43712.3. Physicochemical Properties of Carbon Materials Relevant to Fuel Cell Operation 43812.3.1. Electron Conduction 43812.3.2. Surface Properties 44012.4. Preparation of Carbon-Supported Electrocatalysts 44312.4.1. Methods Based on Impregnation 44412.4.2. Colloidal Synthesis 44512.4.3. Electrodeposition 44512.4.4. Other Methods 44612.5. Structural Characterization of Carbon-Supported Metal Catalysts 44612.5.1. Adsorption Studies 44712.5.2. Transmission Electron Microscopy 44812.5.3. Xray Diffraction and Xray Absorption Spectroscopy 44912.5.4. Electrochemical Methods 45012.6. Influence of Carbon Supports on the Catalytic Layers in PEMFCs 45212.6.1. Intrinsic Catalytic Activity 45212.6.2. Macrokinetic Parameters 45612.6.3. Novel Carbon Materials as Supports for Fuel Cell Electrocatalysts 46212.7. Corrosion and Stability of Carbon-Supported Catalysts 46412.7.1. Influence of Microstructure on the Corrosion of Carbon Materials 46412.7.2. Mechanism of Carbon Corrosion 46612.7.3. Corrosion and Stability of MEAs 46712.8. Conclusions 469References 47013 Carbon Materials in Photocatalysis 481Joaquim Luís Faria and Wendong Wang13.1. Introduction 48113.2. Carbon Materials Employed to Modify TiO2 in Photocatalysis 48213.2.1. Activated Carbon 48213.2.2. Carbon Black and Graphite 48313.2.3. Carbon Fiber 48313.2.4. Carbon Nanotubes 48313.2.5. Other Forms of Carbon 48413.3. Synthesis and Characterization of Carbon–TiO2 Composites 48413.3.1. Mechanical Mixture of TiO2 and Carbon Materials 48513.3.2. TiO2 Coated or Loaded on Carbon Materials 48513.3.3. Carbon Materials Coated or Deposited on TiO2 48513.3.4. Other Approaches and Concurrent Synthesis of TiO2–Carbon Composites 48613.3.5. Methods of Characterization 48613.4. Photodegradation on Carbon-Containing Surfaces 48713.4.1. Heterogeneous Photocatalysis in the Liquid Phase with Carbon–TiO2 Composites 48713.4.2. Heterogeneous Photocatalysis in the Gas Phase with Carbon–TiO2 Composites 49113.5. Role of the Carbon Phase in Heterogeneous Photocatalysis 49213.6. Conclusions 498References 49914 Carbon-Based Sensors 507Jun li14.1. Introduction 50714.1.1. Structure of Various Carbon Allotropes 50714.1.2. sp2 Carbon Materials: Graphite Fullerenes and Carbon Nanotubes 50914.2. Physicochemical Properties of sp2 Carbon Materials Relevant to Carbon Sensors 51014.2.1. Electrical and Electronic Properties 51014.2.2. Chemical Properties 51514.2.3. Electrochemical Properties 51614.3. Carbon-Based Sensors 51714.3.1. Carbon Materials as Loading Media 51814.3.2. Carbon Electronic Sensors 51814.3.3. Carbon Electrochemical Sensors 52314.3.4. Carbon Composite Sensors 53014.4. Summary 530References 53015 Carbon-Supported Catalysts for the Chemical Industry 535Venu Arunajatesan Baoshu Chen Konrad Möbus Daniel J. Ostgard Thomas Tacke and Dorit Wolf15.1. Introduction 53515.2. Requirements for Carbon Materials as Catalyst Supports in Industrial Applications 53615.2.1. Activated Carbon 53615.2.2. Carbon Black 54015.3. Industrial Manufacture of Carbon Supports 54415.3.1. Activated Carbon 54415.3.2. Carbon Black 54415.4. Manufacture of Carbon-Supported Catalysts 54515.4.1. Powder Catalysts 54515.4.2. Preparation Technology 54715.5. Reaction Technology 54715.5.1. Batch Stirred-Tank and Loop Reactors 54815.5.2. Fixed-Bed Reactors 55015.6. Industrial Applications 55115.6.1. Fatty Acid Hydrogenation 55115.6.2. Selective Nitrobenzene Hydrogenations 55415.6.3. Reductive Alkylation 55515.6.4. Toluenediamine 55615.6.5. Butanediol 55815.6.6. Purified Terephthalic Acid 56015.7. Testing and Evaluation of Carbon Catalysts 56115.7.1. Current Methods for Catalyst Evaluation 56115.7.2. High-Throughput Testing of Carbon Powder Catalysts 56315.7.3. Catalyst Profiling 56515.8. Conclusions 567References 568Index 573