bokomslag Deep Learning Classifiers with Memristive Networks
Data & IT

Deep Learning Classifiers with Memristive Networks

Alex Pappachen James

Inbunden

2529:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 213 sidor
  • 2019
This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.
  • Författare: Alex Pappachen James
  • Illustratör: Bibliographie
  • Format: Inbunden
  • ISBN: 9783030145224
  • Språk: Engelska
  • Antal sidor: 213
  • Utgivningsdatum: 2019-04-17
  • Förlag: Springer Nature Switzerland AG