bokomslag Descriptive Set Theory and Forcing
Vetenskap & teknik

Descriptive Set Theory and Forcing

Arnold Miller

Pocket

759:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 133 sidor
  • 1995
An advanced graduate course. Some knowledge of forcing is assumed, and some elementary Mathematical Logic, e.g. the Lowenheim-Skolem Theorem. A student with one semester of mathematical logic and 1 of set theory should be prepared to read these notes. The first half deals with the general area of Borel hierarchies. What are the possible lengths of a Borel hierarchy in a separable metric space? Lebesgue showed that in an uncountable complete separable metric space the Borel hierarchy has uncountably many distinct levels, but for incomplete spaces the answer is independent. The second half includes Harrington's Theorem - it is consistent to have sets on the second level of the projective hierarchy of arbitrary size less than the continuum and a proof and appl- ications of Louveau's Theorem on hyperprojective parameters.
  • Författare: Arnold Miller
  • Format: Pocket/Paperback
  • ISBN: 9783540600596
  • Språk: Engelska
  • Antal sidor: 133
  • Utgivningsdatum: 1995-09-01
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K