bokomslag Gabor Szeg: Collected Papers
Vetenskap & teknik

Gabor Szeg: Collected Papers

Gabor P Szeg

Pocket

759:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 880 sidor
  • 2011
1. 1. Definition of L-forms. In the years 1907-1911 O. Toeplitz [21, 22, 23, 24]* studied a class of quadratic forms whose matrix is of the follO\\"ing type: (Ll) C-2 C_I Co C-n-I Cn-I The elements Cn are given complex constants. Toeplitz designated these forms as L-forms and investigated in detail their relation to the analytic function defined in a neighborhood of the unit circle by the Laurent series 2; C z", n = n - 00, . . . , 00; this series is assumed to be convergent in a certain circular ring rl < I z I < r2, rl < 1 < r2. It is obvious that these matrices are connected with the infinite cyclic group, just as the finite cyclic matrix CO CI C2 C Co CI n r (1. 2) Cn-I C Co n L. c, c, Co is associated with the finite cyclic group. The main result of Toeplitz is that the spectrum of the L-form is identical with the complex values the Laurent series assumes on the unit circle I z I = 1. 1. 2. Hermitian forms. The case C = en is of particular importance; the n matrix (1. 1) is in this case a Hermitian one and the associated Laurent series i8 represents a real function f(8) on the unit circle z = e , -'II" ~ 8 < '11".
  • Författare: Gabor P Szeg
  • Format: Pocket/Paperback
  • ISBN: 9781461257875
  • Språk: Engelska
  • Antal sidor: 880
  • Utgivningsdatum: 2011-10-12
  • Förlag: Springer-Verlag New York Inc.