bokomslag Generalized Normalizing Flows via Markov Chains
Vetenskap & teknik

Generalized Normalizing Flows via Markov Chains

Paul Lyonel Hagemann

Pocket

399:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 75 sidor
  • 2023
Normalizing flows, diffusion normalizing flows and variational autoencoders are powerful generative models. This Element provides a unified framework to handle these approaches via Markov chains. The authors consider stochastic normalizing flows as a pair of Markov chains fulfilling some properties, and show how many state-of-the-art models for data generation fit into this framework. Indeed numerical simulations show that including stochastic layers improves the expressivity of the network and allows for generating multimodal distributions from unimodal ones. The Markov chains point of view enables the coupling of both deterministic layers as invertible neural networks and stochastic layers as Metropolis-Hasting layers, Langevin layers, variational autoencoders and diffusion normalizing flows in a mathematically sound way. The authors' framework establishes a useful mathematical tool to combine the various approaches.
  • Författare: Paul Lyonel Hagemann
  • Illustratör: Worked examples or Exercises
  • Format: Pocket/Paperback
  • ISBN: 9781009331005
  • Språk: Engelska
  • Antal sidor: 75
  • Utgivningsdatum: 2023-02-02
  • Förlag: Cambridge University Press