bokomslag Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling
Data & IT

Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling

Schirin Br

Pocket

759:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 148 sidor
  • 2022
The production control of flexible manufacturing systems is a relevant component that must go along with the requirements of being flexible in terms of new product variants, new machine skills and reaction to unforeseen events during runtime. This work focuses on developing a reactive job-shop scheduling system for flexible and re-configurable manufacturing systems. Reinforcement Learning approaches are therefore investigated for the concept of multiple agents that control products including transportation and resource allocation.
  • Författare: Schirin Br
  • Format: Pocket/Paperback
  • ISBN: 9783658391782
  • Språk: Engelska
  • Antal sidor: 148
  • Utgivningsdatum: 2022-10-02
  • Förlag: Springer Vieweg