1009:-
Uppskattad leveranstid 10-16 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
Andra format:
- Pocket/Paperback 1449:-
This book is concerned with the study in two dimensions of stationary solutions of u? of a complex valued Ginzburg-Landau equation involving a small parameter ?. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ? has a dimension of a length which is usually small. Thus, it is of great interest to study the asymptotics as ? tends to zero. One of the main results asserts that the limit u-star of minimizers u? exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree - or winding number - of the boundary condition. Each singularity has degree one - or as physicists would say, vortices are quantized. The material presented in this book covers mostly original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis,partial differential equations, and complex functions. This book is designed for researchers and graduate students alike, and can be used as a one-semester text. The present softcover reprint is designed to make this classic text available to a wider audience.
- Format: Pocket/Paperback
- ISBN: 9783319666723
- Språk: Engelska
- Antal sidor: 159
- Utgivningsdatum: 2017-10-05
- Förlag: Birkhauser Verlag AG