bokomslag Ginzburg-Landau Vortices
Vetenskap & teknik

Ginzburg-Landau Vortices

Fabrice Bethuel Haim Brezis Frederic Helein

Pocket

1519:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 162 sidor
  • 1994
The original motivation of this study comes from the following questions that were mentioned to one ofus by H. Matano. Let 2 2 G= B = {x=(X1lX2) E 2; x~ + x~ = Ixl < 1}. 1 Consider the Ginzburg-Landau functional 2 2 (1) E~(u) = ~ LIVul + 4~2 L(lu1 _1)2 which is defined for maps u E H1(G;C) also identified with Hl(G;R2). Fix the boundary condition 9(X) =X on 8G and set H; = {u E H1(G;C); u = 9 on 8G}. It is easy to see that (2) is achieved by some u~ that is smooth and satisfies the Euler equation in G, -~u~ = :2 u~(1 _lu~12) (3) { on aGo u~ =9 Themaximum principleeasily implies (see e.g., F. Bethuel, H. Brezisand F. Helein (2]) that any solution u~ of (3) satisfies lu~1 ~ 1 in G. In particular, a subsequence (u~,.) converges in the w* - LOO(G) topology to a limit u*.
  • Författare: Fabrice Bethuel, Haim Brezis, Frederic Helein
  • Format: Pocket/Paperback
  • ISBN: 9780817637231
  • Språk: Engelska
  • Antal sidor: 162
  • Utgivningsdatum: 1994-03-01
  • Förlag: Birkhauser Boston Inc