bokomslag Grouping Multidimensional Data
Data & IT

Grouping Multidimensional Data

Jacob Kogan Charles Nicholas Marc Teboulle

Pocket

1499:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 268 sidor
  • 2010
Clustering is one of the most fundamental and essential data analysis techniques. Clustering can be used as an independent data mining task to discern intrinsic characteristics of data, or as a preprocessing step with the clustering results then used for classification, correlation analysis, or anomaly detection. Kogan and his co-editors have put together recent advances in clustering large and high-dimension data. Their volume addresses new topics and methods which are central to modern data analysis, with particular emphasis on linear algebra tools, opimization methods and statistical techniques. The contributions, written by leading researchers from both academia and industry, cover theoretical basics as well as application and evaluation of algorithms, and thus provide an excellent state-of-the-art overview. The level of detail, the breadth of coverage, and the comprehensive bibliography make this book a perfect fit for researchers and graduate students in data mining and in many other important related application areas.
  • Författare: Jacob Kogan, Charles Nicholas, Marc Teboulle
  • Format: Pocket/Paperback
  • ISBN: 9783642066542
  • Språk: Engelska
  • Antal sidor: 268
  • Utgivningsdatum: 2010-02-12
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K