bokomslag Introduction to Clustering Large and High-Dimensional Data
Data & IT

Introduction to Clustering Large and High-Dimensional Data

Jacob Kogan

Pocket

679:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 222 sidor
  • 2006
Läs ett provkapitel här>>

Se innehållsförteckningen här>>

There is a growing need for a more automated system of partitioning data sets into groups, or clusters. For example, digital libraries and the World Wide Web continue to grow exponentially, the ability to find useful information increasingly depends on the indexing infrastructure or search engine. Clustering techniques can be used to discover natural groups in data sets and to identify abstract structures that might reside there, without having any background knowledge of the characteristics of the data. Clustering has been used in a variety of areas, including computer vision, VLSI design, data mining, bio-informatics (gene expression analysis), and information retrieval, to name just a few. This book focuses on a few of the most important clustering algorithms, providing a detailed account of these major models in an information retrieval context. The beginning chapters introduce the classic algorithms in detail, while the later chapters describe clustering through divergences and show recent research for more advanced audiences.
  • Författare: Jacob Kogan
  • Format: Pocket/Paperback
  • ISBN: 9780521617932
  • Språk: Engelska
  • Antal sidor: 222
  • Utgivningsdatum: 2006-11-01
  • Förlag: Cambridge University Press