1369:-
Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.
The author introduces a notion of hyperbolic groupoids, generalizing the notion of a Gromov hyperbolic group. Examples of hyperbolic groupoids include actions of Gromov hyperbolic groups on their boundaries, pseudogroups generated by expanding self-coverings, natural pseudogroups acting on leaves of stable (or unstable) foliation of an Anosov diffeomorphism, etc. The author describes a duality theory for hyperbolic groupoids. He shows that for every hyperbolic groupoid $\mathfrak{G}$ there is a naturally defined dual groupoid $\mathfrak{G}^\top$ acting on the Gromov boundary of a Cayley graph of $\mathfrak{G}$. The groupoid $\mathfrak{G}^\top$ is also hyperbolic and such that $(\mathfrak{G}^\top)^\top$ is equivalent to $\mathfrak{G}$. Several classes of examples of hyperbolic groupoids and their applications are discussed.
- Format: Pocket/Paperback
- ISBN: 9781470415440
- Språk: Engelska
- Antal sidor: 108
- Utgivningsdatum: 2015-08-30
- Förlag: American Mathematical Society