bokomslag Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces
Vetenskap & teknik

Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces

F Dahmani V Guirardel D Osin

Pocket

1269:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 154 sidor
  • 2017
The authors introduce and study the notions of hyperbolically embedded and very rotating families of subgroups. The former notion can be thought of as a generalization of the peripheral structure of a relatively hyperbolic group, while the latter one provides a natural framework for developing a geometric version of small cancellation theory. Examples of such families naturally occur in groups acting on hyperbolic spaces including hyperbolic and relatively hyperbolic groups, mapping class groups, $Out(F_n)$, and the Cremona group. Other examples can be found among groups acting geometrically on $CAT(0)$ spaces, fundamental groups of graphs of groups, etc. The authors obtain a number of general results about rotating families and hyperbolically embedded subgroups; although their technique applies to a wide class of groups, it is capable of producing new results even for well-studied particular classes. For instance, the authors solve two open problems about mapping class groups, and obtain some results which are new even for relatively hyperbolic groups.
  • Författare: F Dahmani, V Guirardel, D Osin
  • Format: Pocket/Paperback
  • ISBN: 9781470421946
  • Språk: Engelska
  • Antal sidor: 154
  • Utgivningsdatum: 2017-03-30
  • Förlag: American Mathematical Society