bokomslag Hyperresolutions cubiques et descente cohomologique
Vetenskap & teknik

Hyperresolutions cubiques et descente cohomologique

Francisco Guillen Vincente Navarro Aznar Pedro Pascual-Gainza Fernando Puerta

Pocket

309:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 192 sidor
  • 1988
This monograph establishes a general context for the cohomological use of Hironaka's theorem on the resolution of singularities. It presents the theory of cubical hyperresolutions, and this yields the cohomological properties of general algebraic varieties, following Grothendieck's general ideas on descent as formulated by Deligne in his method for simplicial cohomological descent. These hyperrsolutions are applied in problems concerning possibly singular varieties: the monodromy of a holomorphic function defined on a complex analytic space, the De Rham cohmomology of varieties over a field of zero characteristic, Hodge-Deligne theory and the generalization of Kodaira-Akizuki-Nakano's vanishing theorem to singular algebraic varieties. As a variation of the same ideas, an application of cubical quasi-projective hyperresolutions to algebraic K-theory is given.
  • Författare: Francisco Guillen, Vincente Navarro Aznar, Pedro Pascual-Gainza, Fernando Puerta
  • Format: Pocket/Paperback
  • ISBN: 9783540500230
  • Språk: Franska
  • Antal sidor: 192
  • Utgivningsdatum: 1988-07-01
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K