bokomslag Improved Feature Extraction, Feature Selection, and Identification Techniques that Create a Fast Unsupervised Hyperspectral Target Detection Algorithm
Psykologi & pedagogik

Improved Feature Extraction, Feature Selection, and Identification Techniques that Create a Fast Unsupervised Hyperspectral Target Detection Algorithm

Robert J Johnson

Pocket

879:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 248 sidor
  • 2012
This research extends the emerging field of hyperspectral image (HSI) target detectors that assume a global linear mixture model (LMM) of HSI and employ independent component analysis (ICA) to unmix HSI images. Via new techniques to fully automate feature extraction, feature selection, and target pixel identification, an autonomous global anomaly detector, AutoGAD, has been developed for potential employment in an operational environment for real-time processing of HSI targets. For dimensionality reduction (initial feature extraction prior to ICA), a geometric solution that effectively approximates the number of distinct spectral signals is presented.
  • Författare: Robert J Johnson
  • Format: Pocket/Paperback
  • ISBN: 9781249831938
  • Språk: Engelska
  • Antal sidor: 248
  • Utgivningsdatum: 2012-10-17
  • Förlag: Biblioscholar