839:-
Uppskattad leveranstid 7-12 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
This research monograph provides a geometric description of holonomic differential systems in one or more variables. Stokes matrices form the extended monodromy data for a linear differential equation of one complex variable near an irregular singular point. The present volume presents the approach in terms of Stokes filtrations. For linear differential equations on a Riemann surface, it also develops the related notion of a Stokes-perverse sheaf. This point of view is generalized to holonomic systems of linear differential equations in the complex domain, and a general Riemann-Hilbert correspondence is proved for vector bundles with meromorphic connections on a complex manifold. Applications to the distributions solutions to such systems are also discussed, and various operations on Stokes-filtered local systems are analyzed.
- Illustratör: 13 schwarz-weiße und 1 farbige Abbildungen
- Format: Pocket/Paperback
- ISBN: 9783642316944
- Språk: Engelska
- Antal sidor: 249
- Utgivningsdatum: 2012-10-04
- Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K