Local Entropy Theory of a Random Dynamical System

Häftad, Engelska, 2015

Av Anthony H. Dooley, Guohua Zhang

1 199 kr

Tillfälligt slut

In this paper the authors extend the notion of a continuous bundle random dynamical system to the setting where the action of R or N is replaced by the action of an infinite countable discrete amenable group.Given such a system, and a monotone sub-additive invariant family of random continuous functions, they introduce the concept of local fiber topological pressure and establish an associated variational principle, relating it to measure-theoretic entropy. They also discuss some variants of this variational principle.The authors introduce both topological and measure-theoretic entropy tuples for continuous bundle random dynamical systems, and apply variational principles to obtain a relationship between these of entropy tuples. Finally, they give applications of these results to general topological dynamical systems, recovering and extending many recent results in local entropy theory.

Produktinformation

  • Utgivningsdatum2015-01-30
  • Mått178 x 254 x undefined mm
  • Vikt200 g
  • FormatHäftad
  • SpråkEngelska
  • SerieMemoirs of the American Mathematical Society
  • FörlagAmerican Mathematical Society
  • ISBN9781470410551

Tillhör följande kategorier