bokomslag Machine Learning and Knowledge Discovery in Databases
Data & IT

Machine Learning and Knowledge Discovery in Databases

Dimitrios Gunopulos Thomas Hofmann Donato Malerba Michalis Vazirgiannis

Pocket

769:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 649 sidor
  • 2011
This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011. The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.
  • Författare: Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba, Michalis Vazirgiannis
  • Format: Pocket/Paperback
  • ISBN: 9783642237799
  • Språk: Engelska
  • Antal sidor: 649
  • Utgivningsdatum: 2011-09-06
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K