bokomslag Mathematics for Machine Learning
Data & IT

Mathematics for Machine Learning

Marc Peter Deisenroth

Pocket

729:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 398 sidor
  • 2020
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For studentsand otherswith a mathematical background, these derivations provide a starting point to machine learning texts. Forthoselearning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
  • Författare: Marc Peter Deisenroth
  • Illustratör: color 3 Halftones Worked examples or Exercises 106 Halftones black and white
  • Format: Pocket/Paperback
  • ISBN: 9781108455145
  • Språk: Engelska
  • Antal sidor: 398
  • Utgivningsdatum: 2020-04-23
  • Förlag: Cambridge University Press