bokomslag Meta-analysis of Binary Data Using Profile Likelihood
Vetenskap & teknik

Meta-analysis of Binary Data Using Profile Likelihood

Dankmar Bohning Sasivimol Rattanasiri Ronny Kuhnert

Pocket

1269:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 208 sidor
  • 2019
Providing reliable information on an intervention effect, meta-analysis is a powerful statistical tool for analyzing and combining results from individual studies. Meta-Analysis of Binary Data Using Profile Likelihood focuses on the analysis and modeling of a meta-analysis with individually pooled data (MAIPD). It presents a unifying approach to modeling a treatment effect in a meta-analysis of clinical trials with binary outcomes. After illustrating the meta-analytic situation of an MAIPD with several examples, the authors introduce the profile likelihood model and extend it to cope with unobserved heterogeneity. They describe elements of log-linear modeling, ways for finding the profile maximum likelihood estimator, and alternative approaches to the profile likelihood method. The authors also discuss how to model covariate information and unobserved heterogeneity simultaneously and use the profile likelihood method to estimate odds ratios. The final chapters look at quantifying heterogeneity in an MAIPD and show how meta-analysis can be applied to the surveillance of scrapie. Containing new developments not available in the current literature, along with easy-to-follow inferences and algorithms, this book enables clinicians to efficiently analyze MAIPDs.
  • Författare: Dankmar Bohning, Sasivimol Rattanasiri, Ronny Kuhnert
  • Format: Pocket/Paperback
  • ISBN: 9780367387570
  • Språk: Engelska
  • Antal sidor: 208
  • Utgivningsdatum: 2019-10-21
  • Förlag: Chapman & Hall/CRC