Data & IT
Pocket
Nonlinear state and parameter estimation of spatially distributed systems
Felix Sawo
579:-
Uppskattad leveranstid 7-12 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion.
- Format: Pocket/Paperback
- ISBN: 9783866443709
- Språk: Engelska
- Antal sidor: 176
- Utgivningsdatum: 2014-10-16
- Förlag: Karlsruher Institut Fur Technologie