Partial Differential Equations VIII

Overdetermined Systems Dissipative Singular Schrödinger Operator Index Theory

Häftad, Engelska, 2012

Av M.A. Shubin, M. a. Shubin, M. A. Shubin

1 279 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Consider a linear partial differential operator A that maps a vector-valued function Y = (Yl," Ym) into a vector-valued function I = (h,***, II). We assume at first that all the functions, as well as the coefficients of the differen- tial operator, are defined in an open domain Jl in the n-dimensional Euclidean n space IR , and that they are smooth (infinitely differentiable). A is called an overdetermined operator if there is a non-zero differential operator A' such that the composition A' A is the zero operator (and underdetermined if there is a non-zero operator A" such that AA" = 0). If A is overdetermined, then A'I = 0 is a necessary condition for the solvability of the system Ay = I with an unknown vector-valued function y. 3 A simple example in 1R is the operator grad, which maps a scalar func- tion Y into the vector-valued function (8y/8x!, 8y/8x2, 8y/8x3)' A necessary solvability condition for the system grad y = I has the form curl I = O.

Produktinformation