bokomslag Power Electronics for Green Energy Conversion
3549:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 640 sidor
  • 2022
POWER ELECTRONICS for GREEN ENERGY CONVERSION Written and edited by a team of renowned experts, this exciting new volume explores the concepts and practical applications of power electronics for green energy conversion, going into great detail with ample examples, for the engineer, scientist, or student. Power electronics has emerged as one of the most important technologies in the world and will play a big role in the conversion of the present power grid systems into smart grids. Applications like HVDC systems, FACTs devices, uninterruptible power systems, and renewable energy systems totally rely on advances in power electronic devices and control systems. Further, the need for renewable energy continues to grow, and the complete departure of fossil fuels and nuclear energy is not unrealistic thanks to power electronics. Therefore, the increasingly more important role of power electronics in the power sector industry remains paramount. This groundbreaking new volume aims to cover these topics and trends of power electronic converters, bridging the research gap on green energy conversion system architectures, controls, and protection challenges to enable their wide-scale implementation. Covering not only the concepts of all of these topics, the editors and contributors describe real-world implementation of these ideas and how they can be used for practical applications. Whether for the engineer, scientist, researcher, or student, this outstanding contribution to the science is a must-have for any library.
  • Författare: Mahajan Sagar Bhaskar, Nikita Gupta, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen, Umashankar Subramaniam
  • Format: Inbunden
  • ISBN: 9781119786481
  • Språk: Engelska
  • Antal sidor: 640
  • Utgivningsdatum: 2022-07-14
  • Förlag: Wiley-Scrivener