bokomslag Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on $\mathbb {R}$
Vetenskap & teknik

Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on $\mathbb {R}$

Peter Polacik

Pocket

1449:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 87 sidor
  • 2020
The author considers semilinear parabolic equations of the form $u_t=u_xx f(u),\quad x\in \mathbb R,t>0,$ where $f$ a $C^1$ function. Assuming that $0$ and $\gamma >0$ are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions $u$ whose initial values $u(x,0)$ are near $\gamma $ for $x\approx -\infty $ and near $0$ for $x\approx \infty $. If the steady states $0$ and $\gamma $ are both stable, the main theorem shows that at large times, the graph of $u(\cdot ,t)$ is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). The author proves this result without requiring monotonicity of $u(\cdot ,0)$ or the nondegeneracy of zeros of $f$. The case when one or both of the steady states $0$, $\gamma $ is unstable is considered as well. As a corollary to the author's theorems, he shows that all front-like solutions are quasiconvergent: their $\omega $-limit sets with respect to the locally uniform convergence consist of steady states. In the author's proofs he employs phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories $\{(u(x,t),u_x(x,t)):x\in \mathbb R\}$, $t>0$, of the solutions in question.
  • Författare: Peter Polacik
  • Format: Pocket/Paperback
  • ISBN: 9781470441128
  • Språk: Engelska
  • Antal sidor: 87
  • Utgivningsdatum: 2020-06-30
  • Förlag: American Mathematical Society