Robust Recognition via Information Theoretic Learning

Häftad, Engelska, 2014

Av Ran He, Baogang Hu, Xiaotong Yuan, Liang Wang

739 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.

Produktinformation

  • Utgivningsdatum2014-09-09
  • Mått155 x 235 x 8 mm
  • Vikt201 g
  • FormatHäftad
  • SpråkEngelska
  • SerieSpringerBriefs in Computer Science
  • Antal sidor110
  • Upplaga2014
  • FörlagSpringer International Publishing AG
  • ISBN9783319074153

Tillhör följande kategorier