Robust Recognition via Information Theoretic Learning
Häftad, Engelska, 2014
729 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.
Produktinformation
- Utgivningsdatum2014-09-09
- Mått155 x 235 x 8 mm
- Vikt201 g
- SpråkEngelska
- SerieSpringerBriefs in Computer Science
- Antal sidor110
- Upplaga2014
- FörlagSpringer International Publishing AG
- EAN9783319074153