bokomslag Robust Recognition via Information Theoretic Learning
Data & IT

Robust Recognition via Information Theoretic Learning

Ran He Baogang Hu Xiaotong Yuan Liang Wang

Pocket

759:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 110 sidor
  • 2014
This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy. The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.
  • Författare: Ran He, Baogang Hu, Xiaotong Yuan, Liang Wang
  • Illustratör: 12 schwarz-weiße Tabellen 4 schwarz-weiße und 24 farbige Abbildungen Bibliographie
  • Format: Pocket/Paperback
  • ISBN: 9783319074153
  • Språk: Engelska
  • Antal sidor: 110
  • Utgivningsdatum: 2014-09-09
  • Förlag: Springer International Publishing AG