bokomslag Singular Integrals and Fourier Theory on Lipschitz Boundaries
Vetenskap & teknik

Singular Integrals and Fourier Theory on Lipschitz Boundaries

Tao Qian Pengtao Li

Pocket

1219:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 306 sidor
  • 2020
The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dunford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications. The book offers a valuable resource for all graduate students and researchers interested in singular integrals and Fourier multipliers.
  • Författare: Tao Qian, Pengtao Li
  • Format: Pocket/Paperback
  • ISBN: 9789811365027
  • Språk: Engelska
  • Antal sidor: 306
  • Utgivningsdatum: 2020-10-15
  • Förlag: Springer Verlag, Singapore