Hoppa till sidans huvudinnehåll

Del 419

The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations

Häftad, Engelska, 2015

Av J. C. Meyer, D. J. Needham, J. C. (University of Birmingham) Meyer, D. J. (University of Birmingham) Needham

919 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Reaction-diffusion theory is a topic which has developed rapidly over the last thirty years, particularly with regards to applications in chemistry and life sciences. Of particular importance is the analysis of semi-linear parabolic PDEs. This monograph provides a general approach to the study of semi-linear parabolic equations when the nonlinearity, while failing to be Lipschitz continuous, is Hölder and/or upper Lipschitz continuous, a scenario that is not well studied, despite occurring often in models. The text presents new existence, uniqueness and continuous dependence results, leading to global and uniformly global well-posedness results (in the sense of Hadamard). Extensions of classical maximum/minimum principles, comparison theorems and derivative (Schauder-type) estimates are developed and employed. Detailed specific applications are presented in the later stages of the monograph. Requiring only a solid background in real analysis, this book is suitable for researchers in all areas of study involving semi-linear parabolic PDEs.

Produktinformation

  • Utgivningsdatum2015-10-22
  • Mått152 x 228 x 10 mm
  • Vikt260 g
  • FormatHäftad
  • SpråkEngelska
  • SerieLondon Mathematical Society Lecture Note Series
  • Antal sidor173
  • FörlagCambridge University Press
  • ISBN9781107477391

Tillhör följande kategorier