Vetenskap & teknik
The Dynamical Mordell-Lang Conjecture
Jason P Bell • Dragos Ghioca • Thomas J Tucker
Inbunden
2139:-
Uppskattad leveranstid 5-10 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
The Dynamical Mordell-Lang Conjecture is an analogue of the classical Mordell-Lang conjecture in the context of arithmetic dynamics. It predicts the behavior of the orbit of a point $x$ under the action of an endomorphism $f$ of a quasiprojective complex variety $X$. More precisely, it claims that for any point $x$ in $X$ and any subvariety $V$ of $X$, the set of indices $n$ such that the $n$-th iterate of $x$ under $f$ lies in $V$ is a finite union of arithmetic progressions. In this book the authors present all known results about the Dynamical Mordell-Lang Conjecture, focusing mainly on a $p$-adic approach which provides a parametrization of the orbit of a point under an endomorphism of a variety.
- Format: Inbunden
- ISBN: 9781470424084
- Språk: Engelska
- Antal sidor: 280
- Utgivningsdatum: 2016-04-30
- Förlag: American Mathematical Society