bokomslag The Dynamical Mordell-Lang Conjecture
Vetenskap & teknik

The Dynamical Mordell-Lang Conjecture

Jason P Bell Dragos Ghioca Thomas J Tucker

Inbunden

2139:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 280 sidor
  • 2016
The Dynamical Mordell-Lang Conjecture is an analogue of the classical Mordell-Lang conjecture in the context of arithmetic dynamics. It predicts the behavior of the orbit of a point $x$ under the action of an endomorphism $f$ of a quasiprojective complex variety $X$. More precisely, it claims that for any point $x$ in $X$ and any subvariety $V$ of $X$, the set of indices $n$ such that the $n$-th iterate of $x$ under $f$ lies in $V$ is a finite union of arithmetic progressions. In this book the authors present all known results about the Dynamical Mordell-Lang Conjecture, focusing mainly on a $p$-adic approach which provides a parametrization of the orbit of a point under an endomorphism of a variety.
  • Författare: Jason P Bell, Dragos Ghioca, Thomas J Tucker
  • Format: Inbunden
  • ISBN: 9781470424084
  • Språk: Engelska
  • Antal sidor: 280
  • Utgivningsdatum: 2016-04-30
  • Förlag: American Mathematical Society