Del 2085

Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise

Häftad, Engelska, 2013

Av Arnaud Debussche, Michael Högele, Peter Imkeller, Michael Hogele

509 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.

Produktinformation

  • Utgivningsdatum2013-10-14
  • Mått155 x 235 x 14 mm
  • Vikt290 g
  • FormatHäftad
  • SpråkEngelska
  • SerieLecture Notes in Mathematics
  • Antal sidor165
  • Upplaga2013
  • FörlagSpringer International Publishing AG
  • ISBN9783319008271