Data & IT
Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning
Vikram Jain • Marian Verhelst
Inbunden
2019:-
Uppskattad leveranstid 10-16 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
Andra format:
- Pocket/Paperback 1439:-
This book explores and motivates the need for building homogeneous and heterogeneous multi-core systems for machine learning to enable flexibility and energy-efficiency. Coverage focuses on a key aspect of the challenges of (extreme-)edge-computing, i.e., design of energy-efficient and flexible hardware architectures, and hardware-software co-optimization strategies to enable early design space exploration of hardware architectures. The authors investigate possible design solutions for building single-core specialized hardware accelerators for machine learning and motivates the need for building homogeneous and heterogeneous multi-core systems to enable flexibility and energy-efficiency. The advantages of scaling to heterogeneous multi-core systems are shown through the implementation of multiple test chips and architectural optimizations.
- Format: Inbunden
- ISBN: 9783031382291
- Språk: Engelska
- Antal sidor: 186
- Utgivningsdatum: 2023-09-17
- Förlag: Springer International Publishing AG