bokomslag Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning
Data & IT

Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning

Vikram Jain Marian Verhelst

Pocket

1439:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 186 sidor
  • 2024
This book explores and motivates the need for building homogeneous and heterogeneous multi-core systems for machine learning to enable flexibility and energy-efficiency. Coverage focuses on a key aspect of the challenges of (extreme-)edge-computing, i.e., design of energy-efficient and flexible hardware architectures, and hardware-software co-optimization strategies to enable early design space exploration of hardware architectures. The authors investigate possible design solutions for building single-core specialized hardware accelerators for machine learning and motivates the need for building homogeneous and heterogeneous multi-core systems to enable flexibility and energy-efficiency. The advantages of scaling to heterogeneous multi-core systems are shown through the implementation of multiple test chips and architectural optimizations.
  • Författare: Vikram Jain, Marian Verhelst
  • Format: Pocket/Paperback
  • ISBN: 9783031382321
  • Språk: Engelska
  • Antal sidor: 186
  • Utgivningsdatum: 2024-09-18
  • Förlag: Springer International Publishing AG