bokomslag VLSI and Hardware Implementations using Modern Machine Learning Methods
Data & IT

VLSI and Hardware Implementations using Modern Machine Learning Methods

Sandeep Saini Kusum Lata G R Sinha

Pocket

779:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-15 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 312 sidor
  • 2024
Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learningbased methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques. Features: Provides the details of state-of-the-art machine learning methods used in VLSI design Discusses hardware implementation and device modeling pertaining to machine learning algorithms Explores machine learning for various VLSI architectures and reconfigurable computing Illustrates the latest techniques for device size and feature optimization Highlights the latest case studies and reviews of the methods used for hardware implementation This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.
  • Författare: Sandeep Saini, Kusum Lata, G R Sinha
  • Format: Pocket/Paperback
  • ISBN: 9781032061726
  • Språk: Engelska
  • Antal sidor: 312
  • Utgivningsdatum: 2024-10-07
  • Förlag: CRC Press