bokomslag Extremum Problems for Eigenvalues of Elliptic Operators
Vetenskap & teknik

Extremum Problems for Eigenvalues of Elliptic Operators

Antoine Henrot

Pocket

839:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 202 sidor
  • 2006
Problems linking the shape of a domain or the coefficients of an elliptic operator to the sequence of its eigenvalues are among the most fascinating of mathematical analysis. In this book, we focus on extremal problems. For instance, we look for a domain which minimizes or maximizes a given eigenvalue of the Laplace operator with various boundary conditions and various geometric constraints. We also consider the case of functions of eigenvalues. We investigate similar questions for other elliptic operators, such as the Schrdinger operator, non homogeneous membranes, or the bi-Laplacian, and we look at optimal composites and optimal insulation problems in terms of eigenvalues. Providing also a self-contained presentation of classical isoperimetric inequalities for eigenvalues and 30 open problems, this book will be useful for pure and applied mathematicians, particularly those interested in partial differential equations, the calculus of variations, differential geometry, or spectral theory.
  • Författare: Antoine Henrot
  • Illustratör: Bibliographie
  • Format: Pocket/Paperback
  • ISBN: 9783764377052
  • Språk: Engelska
  • Antal sidor: 202
  • Utgivningsdatum: 2006-07-01
  • Förlag: Birkhauser Verlag AG