1509:-
Uppskattad leveranstid 10-16 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
Andra format:
- Pocket/Paperback 1509:-
Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves. This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.
- Illustratör: 37 schwarz-weiße Zeichnungen 39 schwarz-weiße Abbildungen, 2 schwarz-weiße Fotos 38 schwarz-weiße
- Format: Inbunden
- ISBN: 9783540692805
- Språk: Engelska
- Antal sidor: 182
- Utgivningsdatum: 2008-08-19
- Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K