Del 20

Machine Learning for Evolution Strategies

Häftad, Engelska, 2018

Av Oliver Kramer

1 439 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Finns i fler format (1)


This bookintroduces numerous algorithmic hybridizations between both worlds that showhow machine learning can improve and support evolution strategies. The set ofmethods comprises covariance matrix estimation, meta-modeling of fitness andconstraint functions, dimensionality reduction for search and visualization ofhigh-dimensional optimization processes, and clustering-based niching. Aftergiving an introduction to evolution strategies and machine learning, the bookbuilds the bridge between both worlds with an algorithmic and experimentalperspective. Experiments mostly employ a (1+1)-ES and are implemented in Pythonusing the machine learning library scikit-learn. The examples are conducted ontypical benchmark problems illustrating algorithmic concepts and theirexperimental behavior. The book closes with a discussion of related lines ofresearch.

Produktinformation

  • Utgivningsdatum2018-05-30
  • Mått155 x 235 x undefined mm
  • FormatHäftad
  • SpråkEngelska
  • SerieStudies in Big Data
  • Antal sidor124
  • FörlagSpringer International Publishing AG
  • ISBN9783319815008