Del 20 - Studies in Big Data
Machine Learning for Evolution Strategies
Häftad, Engelska, 2018
1 439 kr
Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Finns i fler format (1)
This bookintroduces numerous algorithmic hybridizations between both worlds that showhow machine learning can improve and support evolution strategies. The set ofmethods comprises covariance matrix estimation, meta-modeling of fitness andconstraint functions, dimensionality reduction for search and visualization ofhigh-dimensional optimization processes, and clustering-based niching. Aftergiving an introduction to evolution strategies and machine learning, the bookbuilds the bridge between both worlds with an algorithmic and experimentalperspective. Experiments mostly employ a (1+1)-ES and are implemented in Pythonusing the machine learning library scikit-learn. The examples are conducted ontypical benchmark problems illustrating algorithmic concepts and theirexperimental behavior. The book closes with a discussion of related lines ofresearch.
Produktinformation
- Utgivningsdatum2018-05-30
- Mått155 x 235 x undefined mm
- FormatHäftad
- SpråkEngelska
- SerieStudies in Big Data
- Antal sidor124
- FörlagSpringer International Publishing AG
- ISBN9783319815008