bokomslag Self-Adaptive Heuristics for Evolutionary Computation
Data & IT

Self-Adaptive Heuristics for Evolutionary Computation

Oliver Kramer

Pocket

1509:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 182 sidor
  • 2010
Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves. This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.
  • Författare: Oliver Kramer
  • Format: Pocket/Paperback
  • ISBN: 9783642088780
  • Språk: Engelska
  • Antal sidor: 182
  • Utgivningsdatum: 2010-10-28
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K